Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 10: 1190094, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37674539

RESUMO

Histone deacetylase 3 (HDAC3) and nuclear receptor co-repressor (NCoR1/2) are epigenetic regulators that play a key role in gene expression and metabolism. HDAC3 is a class I histone deacetylase that functions as a transcriptional co-repressor, modulating gene expression by removing acetyl groups from histones and non-histone proteins. NCoR1, on the other hand, is a transcriptional co-repressor that interacts with nuclear hormone receptors, including peroxisome proliferator-activated receptor gamma (PPARγ) and liver X receptor (LXR), to regulate metabolic gene expression. Recent research has revealed a functional link between HDAC3 and NCoR1 in the regulation of metabolic gene expression. Genetic deletion of HDAC3 in mouse models has been shown to improve glucose intolerance and insulin sensitivity in the liver, skeletal muscle, and adipose tissue. Similarly, genetic deletion of NCoR1 has improved insulin resistance and reduced adiposity in mouse models. Dysregulation of this interaction has been associated with the development of cardio-metabolic diseases such as cardiovascular diseases, obesity and type 2 diabetes, suggesting that targeting this pathway may hold promise for the development of novel therapeutic interventions. In this review, we summarize the current understanding of individual functions of HDAC3 and NCoR1/2 and the co-repressor complex formation (HDAC3/NCoR1/2) in different metabolic tissues. Further studies are needed to thoroughly understand the mechanisms through which HDAC3, and NCoR1/2 govern metabolic processes and the implications for treating metabolic diseases.

2.
Nat Metab ; 1(11): 1157-1167, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31742248

RESUMO

Catecholamines stimulate the first step of lipolysis by PKA-dependent release of the lipid droplet-associated protein ABHD5 from perilipin to co-activate the lipase ATGL. Here, we unmask a yet unrecognized proteolytic and cardioprotective function of ABHD5. ABHD5 acts in vivo and in vitro as a serine protease cleaving HDAC4. Through the production of an N-terminal polypeptide of HDAC4 (HDAC4-NT), ABHD5 inhibits MEF2-dependent gene expression and thereby controls glucose handling. ABHD5-deficiency leads to neutral lipid storage disease in mice. Cardiac-specific gene therapy of HDAC4-NT does not protect from intra-cardiomyocyte lipid accumulation but strikingly from heart failure, thereby challenging the concept of lipotoxicity-induced heart failure. ABHD5 levels are reduced in failing human hearts and murine transgenic ABHD5 expression protects from pressure-overload induced heart failure. These findings represent a conceptual advance by connecting lipid with glucose metabolism through HDAC4 proteolysis and enable new translational approaches to treat cardiometabolic disease.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Histona Desacetilases/metabolismo , Gotículas Lipídicas , Proteínas Repressoras/metabolismo , Células 3T3-L1 , Animais , Insuficiência Cardíaca/prevenção & controle , Humanos , Camundongos , Ligação Proteica , Proteólise , Serina Proteases/metabolismo
3.
Exp Clin Endocrinol Diabetes ; 127(4): 203-214, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29421830

RESUMO

Levels of reactive metabolites such as reactive carbonyl and oxygen species are increased in patients with diabetes mellitus. The most important reactive dicarbonyl species, methylglyoxal (MG), formed as by-product during glucose metabolism, is more and more recognized as a trigger for the development and progression of diabetic complications. Although it is clear that MG provokes toxic effects, it is currently not well understood what cellular changes MG induces on a molecular level that may lead to pathophysiological conditions found in long-term diabetic complications. Here we review the current knowledge about the molecular effects that MG can induce in a cell. Within the mammalian system, we will focus mostly on the metabolic effects MG exerts when applied systemically to rodents or when applied in vitro to pancreatic ß-cells and adipocytes. Due to the common limitations associated with complex model organisms, we then summarize how yeast as a very simple model organism can help to gain valuable comprehensive information on general defence pathways cells exert in response to MG stress. Pioneering studies in additional rather simple eukaryotic model organisms suggest that many cellular reactions in response to MG are highly conserved throughout evolution.


Assuntos
Adipócitos/metabolismo , Complicações do Diabetes/metabolismo , Células Secretoras de Insulina/metabolismo , Mamíferos/metabolismo , Estresse Oxidativo , Aldeído Pirúvico/metabolismo , Transdução de Sinais , Leveduras/metabolismo , Animais , Humanos
4.
Front Mol Neurosci ; 11: 237, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30050408

RESUMO

The appearance of protein aggregates is a hallmark of several pathologies including many neurodegenerative diseases. Mounting evidence suggests that the accumulation of misfolded proteins into inclusions is a secondary line of defense when the extent of protein misfolding exceeds the capacity of the Protein Quality Control System, which mediates refolding or degradation of misfolded species. Such exhaustion can occur during severe proteotoxic stress, the excessive occurrence of aggregation prone protein species, e.g., amyloids, or during ageing. However, the machinery that mediates recognition, recruitment and deposition of different types of misfolded proteins into specific deposition sites is only poorly understood. Since emerging principles of aggregate deposition appear evolutionarily conserved, yeast represents a powerful model to study basic mechanisms of recognition of different types of misfolded proteins, their recruitment to the respective deposition site and the molecular organization at the corresponding site. Yeast possesses at least three different aggregate deposition sites, one of which is a major deposition site for amyloid aggregates termed Insoluble PrOtein Deposit (IPOD). Due to the link between neurodegenerative disease and accumulation of amyloid aggregates, the IPOD is of particular interest when we aim to identify the molecular mechanisms that cells have evolved to counteract toxicity associated with the occurrence of amyloid aggregates. Here, we will review what is known about IPOD composition and the mechanisms of recognition and recruitment of amyloid aggregates to this site in yeast. Finally, we will briefly discuss the possible physiological role of aggregate deposition at the IPOD.

5.
Redox Biol ; 13: 674-686, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28826004

RESUMO

Energy production is inevitably linked to the generation of toxic metabolites, such as reactive oxygen and carbonyl species, known as major contributors to ageing and degenerative diseases. It remains unclear how cells can adapt to elevated energy flux accompanied by accumulating harmful by-products without taking any damage. Therefore, effects of a sudden rise in glucose concentrations were studied in yeast cells. This revealed a feedback mechanism initiated by the reactive dicarbonyl methylglyoxal, which is formed non-enzymatically during glycolysis. Low levels of methylglyoxal activate a multi-layered defence response against toxic metabolites composed of prevention, detoxification and damage remission. The latter is mediated by the protein quality control system and requires inducible Hsp70 and Btn2, the aggregase that sequesters misfolded proteins. This glycohormetic mechanism enables cells to pre-adapt to rising energy flux and directly links metabolic to proteotoxic stress. Further data suggest the existence of a similar response in endothelial cells.


Assuntos
Metabolismo Energético , Hormese , Aldeído Pirúvico/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Glucose/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Prion ; 11(2): 71-81, 2017 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-28277942

RESUMO

Sequestration of aggregates into specialized deposition sites occurs in many species across all kingdoms of life ranging from bacteria to mammals and is commonly believed to have a cytoprotective function. Yeast cells possess at least 3 different spatially separated deposition sites, one of which is termed "Insoluble Protein Deposit (IPOD)" and harbors amyloid aggregates. We have recently discovered that recruitment of amyloid aggregates to the IPOD uses an actin cable based recruitment machinery that also involves vesicular transport. 1 Here we discuss how different proteins known to be involved in vesicular transport processes to the vacuole might act to guide amyloid aggregates to the IPOD. These factors include the Myosin V motor protein Myo2 involved in transporting vacuolar vesicles along actin cables, the transmembrane protein Atg9 involved in the recruitment of large precursor hydrolase complexes to the vacuole, the phosphatidylinositol/ phosphatidylcholine (PI/PC) transfer protein Sec 14 and the SNARE chaperone Sec 18. Furthermore, we present new data suggesting that the yeast dynamin homolog Vps1 is also crucial for faithful delivery of the amyloid model protein PrD-GFP to the IPOD. This is in agreement with a previously identified role for Vps1 in recruitment of heat-denatured aggregates to a perivacuolar deposition site. 2.


Assuntos
Actinas/metabolismo , Amiloide/metabolismo , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Membrana/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Agregados Proteicos , Saccharomyces cerevisiae/citologia , Solubilidade , Vesículas Transportadoras/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo
7.
PLoS Genet ; 12(9): e1006324, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27689885

RESUMO

Aggregation of amyloidogenic proteins is associated with several neurodegenerative diseases. Sequestration of misfolded and aggregated proteins into specialized deposition sites may reduce their potentially detrimental properties. Yeast exhibits a distinct deposition site for amyloid aggregates termed "Insoluble PrOtein Deposit (IPOD)", but nothing is known about the mechanism of substrate recruitment to this site. The IPOD is located directly adjacent to the Phagophore Assembly Site (PAS) where the cell initiates autophagy and the Cytoplasm-to-Vacuole Targeting (CVT) pathway destined for delivery of precursor peptidases to the vacuole. Recruitment of CVT substrates to the PAS was proposed to occur via vesicular transport on Atg9 vesicles and requires an intact actin cytoskeleton and "SNAP (Soluble NSF Attachment Protein) Receptor Proteins (SNARE)" protein function. It is, however, unknown how this vesicular transport machinery is linked to the actin cytoskeleton. We demonstrate that recruitment of model amyloid PrD-GFP and the CVT substrate precursor-aminopeptidase 1 (preApe1) to the IPOD or PAS, respectively, is disturbed after genetic impairment of Myo2-based actin cable transport and SNARE protein function. Rather than accumulating at the respective deposition sites, both substrates reversibly accumulated often together in the same punctate structures. Components of the CVT vesicular transport machinery including Atg8 and Atg9 as well as Myo2 partially co-localized with the joint accumulations. Thus we propose a model where vesicles, loaded with preApe1 or PrD-GFP, are recruited to tropomyosin coated actin cables via the Myo2 motor protein for delivery to the PAS and IPOD, respectively. We discuss that deposition at the IPOD is not an integrated mandatory part of the degradation pathway for amyloid aggregates, but more likely stores excess aggregates until downstream degradation pathways have the capacity to turn them over after liberation by the Hsp104 disaggregation machinery.

8.
Biotechniques ; 61(3): 137-48, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27625208

RESUMO

Protein aggregation is both a hallmark of and a driving force for a number of diseases. It is therefore important to identify the nature of these aggregates and the mechanism(s) by which the cell counteracts their detrimental properties. Currently, the study of aggregation in vivo is performed primarily using fluorescently tagged versions of proteins and analyzing the aggregates by fluorescence microscopy. While this strategy is considered the gold standard, it has several limitations, particularly with respect to its suitability for high-throughput screening (HTS). Here, using a GFP fusion of the well-characterized yeast prion amyloid protein [PSI+], we demonstrate that flow cytometry, which utilizes the same physical principles as fluorescence microscopy, can be used to determine the aggregate load and pattern in live and fixed yeast cells. Furthermore, our approach can easily be applied to high-throughput analyses such as screenings with a yeast deletion library.


Assuntos
Citometria de Fluxo/métodos , Agregados Proteicos , Saccharomyces cerevisiae/química , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ensaios de Triagem em Larga Escala , Fatores de Terminação de Peptídeos/análise , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Mol Biol Cell ; 26(9): 1601-15, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25761633

RESUMO

Cells adapt to changing nutrient availability by modulating a variety of processes, including the spatial sequestration of enzymes, the physiological significance of which remains controversial. These enzyme deposits are claimed to represent aggregates of misfolded proteins, protein storage, or complexes with superior enzymatic activity. We monitored spatial distribution of lipid biosynthetic enzymes upon glucose depletion in Saccharomyces cerevisiae. Several different cytosolic-, endoplasmic reticulum-, and mitochondria-localized lipid biosynthetic enzymes sequester into distinct foci. Using the key enzyme fatty acid synthetase (FAS) as a model, we show that FAS foci represent active enzyme assemblies. Upon starvation, phospholipid synthesis remains active, although with some alterations, implying that other foci-forming lipid biosynthetic enzymes might retain activity as well. Thus sequestration may restrict enzymes' access to one another and their substrates, modulating metabolic flux. Enzyme sequestrations coincide with reversible drastic mitochondrial reorganization and concomitant loss of endoplasmic reticulum-mitochondria encounter structures and vacuole and mitochondria patch organelle contact sites that are reflected in qualitative and quantitative changes in phospholipid profiles. This highlights a novel mechanism that regulates lipid homeostasis without profoundly affecting the activity status of involved enzymes such that, upon entry into favorable growth conditions, cells can quickly alter lipid flux by relocalizing their enzymes.


Assuntos
Retículo Endoplasmático/fisiologia , Ácido Graxo Sintases/metabolismo , Lipogênese , Mitocôndrias/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Adaptação Fisiológica , Vias Biossintéticas , Meios de Cultura , Retículo Endoplasmático/ultraestrutura , Viabilidade Microbiana , Mitocôndrias/ultraestrutura , Transporte Proteico , ATPases Translocadoras de Prótons/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
10.
Diabetologia ; 58(2): 393-401, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25322843

RESUMO

AIMS/HYPOTHESIS: The aim of this study was to determine the protective effects of human insulin and its analogues, B28Asp human insulin (insulin aspart) and B29Lys(ε-tetradecanoyl),desB30 human insulin (insulin detemir), against glucose-induced lifespan reduction and neuronal damage in the model organism Caenorhabditis elegans and to elucidate the underlying mechanisms. METHODS: Nematodes were cultivated under high glucose (HG) conditions comparable with the situation in diabetic patients and treated with human insulin and its analogues. Lifespan was assessed and neuronal damage was evaluated with regard to structural and functional impairment. Additionally, the activity of glyoxalase-1 and superoxide dismutase (SOD) and the formation of reactive oxygen species (ROS) and AGEs were determined. RESULTS: Insulin and its analogues reversed the life-shortening effect of HG conditions and prevented the glucose-induced neuronal impairment. Insulin treatment under HG conditions was associated with reduced concentration of glucose, as well as a reduced formation of ROS and AGEs, and increased SOD activity. These effects were dependent on the Forkhead box O (FOXO) homologue abnormal dauer formation (DAF)-16. Furthermore, glyoxalase-1 activity, which was impaired under HG conditions, was restored by human insulin. This was essential for the insulin-induced lifespan extension under HG conditions, as no change in lifespan was observed following either suppression or overexpression of glyoxalase-1. CONCLUSIONS/INTERPRETATION: Human insulin and its analogues prevent the reduction in lifespan and neuronal damage caused by HG conditions. The effect of human insulin is mediated by a daf-2/insulin receptor and daf-16/FOXO-dependent pathway and is mediated by upregulation of detoxifying mechanisms.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Insulina Regular Humana/farmacologia , Lactoilglutationa Liase/metabolismo , Animais , Dano ao DNA , Reparo do DNA , Regulação da Expressão Gênica no Desenvolvimento , Longevidade , Transdução de Sinais
11.
PLoS One ; 9(6): e99395, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24915041

RESUMO

Incorporating fluorescent amino acids by suppression of the TAG amber codon is a useful tool for site-specific labeling of proteins and visualizing their localization in living cells. Here we use a plasmid encoded orthogonal tRNA/aminoacyl-tRNA synthetase pair to site-specifically label firefly luciferase with the environmentally sensitive fluorescent amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2- aminopropanoic acid (ANAP) and explore the detectability of conformational changes in labeled luciferase in the yeast cytoplasm. We find that ANAP labeling efficiency is greatly increased in [PSI+] cells and show that analysis of the ANAP fluorescence emission by confocal imaging allows for tracking the thermal unfolding and aggregation of luciferase in vivo. Furthermore we demonstrate that flow cytometry can be used to study conformational changes in luciferase and chaperone-mediated refolding in quantitative terms and at the level of single cells. This experimental setup for the first time allows for the direct analysis of the folding state of a protein in living cells and may serve as valuable new tool for examining mechanisms of protein folding, misfolding and aggregation.


Assuntos
Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Coloração e Rotulagem , Citometria de Fluxo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Temperatura Alta , Interações Hidrofóbicas e Hidrofílicas , Luciferases de Vaga-Lume/metabolismo , Proteínas Mutantes/metabolismo , Mutação/genética , Fatores de Terminação de Peptídeos/metabolismo , Agregados Proteicos , Desnaturação Proteica , Proteínas de Saccharomyces cerevisiae/química , Espectrometria de Fluorescência , beta-Alanina/análogos & derivados , beta-Alanina/metabolismo
12.
Curr Biol ; 23(24): 2452-62, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24291094

RESUMO

BACKGROUND: Exposure of cells to severe heat stress causes not only misfolding and aggregation of proteins but also inhibition of translation and storage of mRNA in cytosolic heat stress granules (heat-SGs), limiting newly synthesized protein influx into overloaded proteome repair systems. How these two heat stress responses connect is unclear. RESULTS: Here, we show that both S. cerevisiae and D. melanogaster heat-SGs contain mRNA, translation machinery components (excluding ribosomes), and molecular chaperones and that heat-SGs coassemble with aggregates of misfolded, heat-labile proteins. Components in these mixed assemblies exhibit distinct molecular motilities reflecting differential trapping. We demonstrate that heat-SG disassembly and restoration of translation activity during heat stress recovery is intimately linked to disaggregation of damaged proteins present in the mixed assemblies and requires Hsp104 and Hsp70 activity. CONCLUSIONS: Chaperone-driven protein disaggregation directly coordinates timing of translation reinitiation with protein folding capacity during cellular protein quality surveillance, enabling efficient protein homeostasis.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Resposta ao Choque Térmico/genética , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Animais , Proteínas de Drosophila/análise , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica , Homeostase , Modelos Biológicos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/fisiologia , Dobramento de Proteína , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Gerontology ; 59(5): 427-37, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23797271

RESUMO

Methylglyoxal (MG), the major dicarbonyl substrate of the enzyme glyoxalase 1 (GLO1), is a reactive metabolite formed via glycolytic flux. Decreased GLO1 activity in situ has been shown to result in an accumulation of MG and increased formation of advanced glycation endproducts, both of which can accumulate during physiological aging and at an accelerated rate in diabetes and other chronic degenerative diseases. To determine the physiological consequences which result from elevated MG levels and the role of MG and GLO1 in aging, wound healing in young (≤12 weeks) and old (≥52 weeks) wild-type mice was studied. Old mice were found to have a significantly slower rate of wound healing compared to young mice (74.9 ± 2.2 vs. 55.4 ± 1.5% wound closure at day 6; 26% decrease; p < 0.0001). This was associated with decreases in GLO1 transcription, expression and activity. The importance of GLO1 was confirmed in mice by inhibition of GLO1. Direct application of MG to the wounds of young mice, decreased wound healing by 24% compared to untreated mice, whereas application of BSA modified minimally by MG had no effect. Treatment of either young or old mice with aminoguanidine, a scavenger of free MG, significantly increased wound closure by 16% (66.8 ± 1.6 vs. 77.2 ± 3.1%; p < 0.05) and 64% (40.4 ± 7.9 vs. 66.4 ± 5.2%; p < 0.05), respectively, by day 6. As a result of the aminoguanidine treatment, the overall rate of wound healing in the old mice was restored to the level observed in the young mice. These findings were confirmed in vitro, as MG reduced migration and proliferation of fibroblasts derived from young and old, wild-type mice. The data demonstrate that the balance between MG and age-dependent GLO1 downregulation contributes to delayed wound healing in old mice.


Assuntos
Envelhecimento/fisiologia , Lactoilglutationa Liase/fisiologia , Cicatrização/fisiologia , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Células Cultivadas , Regulação para Baixo , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Guanidinas/farmacologia , Lactoilglutationa Liase/antagonistas & inibidores , Lactoilglutationa Liase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Aldeído Pirúvico/metabolismo , Aldeído Pirúvico/farmacologia , Cicatrização/efeitos dos fármacos , Cicatrização/genética
14.
Proc Natl Acad Sci U S A ; 109(37): 14906-11, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22927413

RESUMO

Yeast prions constitute a "protein-only" mechanism of inheritance that is widely deployed by wild yeast to create diverse phenotypes. One of the best-characterized prions, [PSI(+)], is governed by a conformational change in the prion domain of Sup35, a translation-termination factor. When this domain switches from its normal soluble form to an insoluble amyloid, the ensuing change in protein synthesis creates new traits. Two factors make these traits heritable: (i) the amyloid conformation is self-templating; and (ii) the protein-remodeling factor heat-shock protein (Hsp)104 (acting together with Hsp70 chaperones) partitions the template to daughter cells with high fidelity. Prions formed by several other yeast proteins create their own phenotypes but share the same mechanistic basis of inheritance. Except for the amyloid fibril itself, the cellular architecture underlying these protein-based elements of inheritance is unknown. To study the 3D arrangement of prion assemblies in their cellular context, we examined yeast [PSI(+)] prions in the native, hydrated state in situ, taking advantage of recently developed methods for cryosectioning of vitrified cells. Cryo-electron tomography of the vitrified sections revealed the prion assemblies as aligned bundles of regularly spaced fibrils in the cytoplasm with no bounding structures. Although the fibers were widely spaced, other cellular complexes, such as ribosomes, were excluded from the fibril arrays. Subtomogram image averaging, made possible by the organized nature of the assemblies, uncovered the presence of an additional array of densities between the fibers. We suggest these structures constitute a self-organizing mechanism that coordinates fiber deposition and the regulation of prion inheritance.


Assuntos
Padrões de Herança/genética , Modelos Moleculares , Príons/química , Conformação Proteica , Leveduras/genética , Microscopia Crioeletrônica , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência
15.
J Cell Biol ; 198(3): 387-404, 2012 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-22869599

RESUMO

Hsp100 and Hsp70 chaperones in bacteria, yeast, and plants cooperate to reactivate aggregated proteins. Disaggregation relies on Hsp70 function and on ATP-dependent threading of aggregated polypeptides through the pore of the Hsp100 AAA(+) hexamer. In yeast, both chaperones also promote propagation of prions by fibril fragmentation, but their functional interplay is controversial. Here, we demonstrate that Hsp70 chaperones were essential for species-specific targeting of their Hsp100 partner chaperones ClpB and Hsp104, respectively, to heat-induced protein aggregates in vivo. Hsp70 inactivation in yeast also abrogated Hsp104 targeting to almost all prions tested and reduced fibril mobility, which indicates that fibril fragmentation by Hsp104 requires Hsp70. The Sup35 prion was unique in allowing Hsp70-independent association of Hsp104 via its N-terminal domain, which, however, was nonproductive. Hsp104 overproduction even outcompeted Hsp70 for Sup35 prion binding, which explains why this condition prevented Sup35 fragmentation and caused prion curing. Our findings indicate a conserved mechanism of Hsp70-Hsp100 cooperation at the surface of protein aggregates and prion fibrils.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Príons/química , Endopeptidase Clp , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Corantes Fluorescentes/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Choque Térmico/química , Microscopia de Fluorescência/métodos , Chaperonas Moleculares/metabolismo , Fatores de Terminação de Peptídeos/química , Peptídeos/química , Plasmídeos/metabolismo , Príons/metabolismo , Estrutura Terciária de Proteína , Proteínas/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Fatores de Tempo
16.
J Struct Biol ; 179(2): 152-60, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22580344

RESUMO

The oligomeric AAA+ chaperones Escherichia coli ClpB and Saccharomyces cerevisiae Hsp104 cooperate with cognate Hsp70/Hsp40 chaperone machineries in the reactivation of aggregated proteins in E. coli and S. cerevisiae. In addition, Hsp104 and Hsp70/Hsp40 are crucial for the maintenance of prion aggregates in yeast cells. While the bichaperone system efficiently solubilizes stress-generated amorphous aggregates, structurally highly ordered prion fibrils are only partially processed, resulting in the generation of fragmented prion seeds that can be transmitted to daughter cells for stable inheritance. Here, we describe and discuss the most recent mechanistic findings on yeast Hsp104 and Hsp70/Hsp40 cooperation in the remodeling of both types of aggregates, emphasizing similarities in the mechanism but also differences in the sensitivities towards chaperone activities.


Assuntos
Chaperonas Moleculares/metabolismo , Príons/metabolismo , Endopeptidase Clp , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/genética , Príons/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Prion ; 6(3): 191-200, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22449721

RESUMO

The yeast prion phenomenon is very widespread and mounting evidence suggests that it has an impact on cellular regulatory mechanisms related to phenotypic responses to changing environments. Studying the aggregation patterns of prion amyloids during different stages of the prion life cycle is a first key step to understand major principles of how and where cells generate, organize and turn-over prion aggregates. The induction of the [PSI (+) ] state involves the actin cytoskeleton and quality control compartments such as the Insoluble Protein Deposit (IPOD). An initially unstable transitional induction state can be visualized by overexpression of the prion determinant and displays characteristic large ring- and ribbon-shaped aggregates consisting of poorly fragmented bundles of very long prion fibrils. In the mature prion state, the aggregation pattern is characterized by highly fragmented, shorter prion fibrils that form aggregates, which can be visualized through tagging with fluorescent proteins. The number of aggregates formed varies, ranging from a single large aggregate at the IPOD to multiple smaller ones, depending on several parameters discussed. Aggregate units below the resolution of light microscopy that are detectable by fluorescence correlation spectroscopy are in equilibrium with larger aggregates in this stage and can mediate faithful inheritance of the prion state. Loss of the prion state is often characterized by reduced fragmentation of prion fibrils and fewer, larger aggregates.


Assuntos
Príons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Príons/análise , Conformação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análise
18.
PLoS Genet ; 7(5): e1001386, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21625618

RESUMO

Prions are self-perpetuating aggregated proteins that are not limited to mammalian systems but also exist in lower eukaryotes including yeast. While much work has focused around chaperones involved in prion maintenance, including Hsp104, little is known about factors involved in the appearance of prions. De novo appearance of the [PSI+] prion, which is the aggregated form of the Sup35 protein, is dramatically enhanced by transient overexpression of SUP35 in the presence of the prion form of the Rnq1 protein, [PIN+]. When fused to GFP and overexpressed in [ps⁻] [PIN+] cells, Sup35 forms fluorescent rings, and cells with these rings bud off [PSI+] daughters. We investigated the effects of over 400 gene deletions on this de novo induction of [PSI+]. Two classes of gene deletions were identified. Class I deletions (bug1Δ, bem1Δ, arf1Δ, and hog1Δ) reduced the efficiency of [PSI+] induction, but formed rings normally. Class II deletions (las17Δ, vps5Δ, and sac6Δ) inhibited both [PSI+] induction and ring formation. Furthermore, class II deletions reduced, while class I deletions enhanced, toxicity associated with the expanded glutamine repeats of the huntingtin protein exon 1 that causes Huntington's disease. This suggests that prion formation and polyglutamine aggregation involve a multi-phase process that can be inhibited at different steps.


Assuntos
Regulação Fúngica da Expressão Gênica , Fatores de Terminação de Peptídeos/biossíntese , Peptídeos/química , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Éxons , Deleção de Genes , Fatores de Terminação de Peptídeos/genética , Peptídeos/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
19.
Nat Rev Mol Cell Biol ; 11(11): 777-88, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20944667

RESUMO

The aggregation of misfolded proteins is associated with the perturbation of cellular function, ageing and various human disorders. Mounting evidence suggests that protein aggregation is often part of the cellular response to an imbalanced protein homeostasis rather than an unspecific and uncontrolled dead-end pathway. It is a regulated process in cells from bacteria to humans, leading to the deposition of aggregates at specific sites. The sequestration of misfolded proteins in such a way is protective for cell function as it allows for their efficient solubilization and refolding or degradation by components of the protein quality-control network. The organized aggregation of misfolded proteins might also allow their asymmetric distribution to daughter cells during cell division.


Assuntos
Fenômenos Fisiológicos Celulares/fisiologia , Dobramento de Proteína , Proteínas/química , Proteínas/fisiologia , Animais , Autofagia/fisiologia , Proteínas de Choque Térmico/fisiologia , Humanos , Modelos Biológicos , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/metabolismo
20.
Proc Natl Acad Sci U S A ; 107(19): 8633-8, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20421488

RESUMO

When the translation termination factor Sup35 adopts the prion state, [PSI(+)], the read-through of stop codons increases, uncovering hidden genetic variation and giving rise to new, often beneficial, phenotypes. Evidence suggests that prion induction involves a process of maturation, but this has never been studied in detail. To do so, we used a visually tractable prion model consisting of the Sup35 prion domain fused to GFP (PrD-GFP) and overexpressed it to achieve induction in many cells simultaneously. PrD-GFP first assembled into Rings as previously described. Rings propagated for many generations before the protein transitioned into a Dot structure. Dots transmitted the [PSI(+)] phenotype through mating and meiosis, but Rings did not. Surprisingly, the underlying amyloid conformation of PrD-GFP was identical in Rings and Dots. However, by electron microscopy, Rings consisted of very long uninterrupted bundles of fibers, whereas Dot fibers were highly fragmented. Both forms were deposited at the IPOD, a biologically ancient compartment for the deposition of irreversibly aggregated proteins that we propose is the site of de novo prion induction. We find that oxidatively damaged proteins are also localized there, helping to explain how proteotoxic stresses increase the rate of prion induction. Curing PrD-GFP prions, by inhibiting Hsp104's fragmentation activity, reversed the induction process: Dot cells produced Rings before PrD-GFP reverted to the soluble state. Thus, formation of the genetically transmissible prion state is a two-step process that involves an ancient system for the asymmetric inheritance of damaged proteins and heritable changes in the extent of prion fragmentation.


Assuntos
Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Amiloide/química , Amiloide/ultraestrutura , Proteínas de Fluorescência Verde/metabolismo , Microscopia , Modelos Biológicos , Fatores de Terminação de Peptídeos/ultraestrutura , Fenótipo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Deleção de Sequência , Solubilidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...